Fabrication of Micro-Scale Gratings by Nanosecond Laser and Its Applications for Deformation Measurements
نویسندگان
چکیده
This paper experimentally investigated the fabrication and optimization of micro-scale gratings formed by nanosecond laser etching. The mechanism of nanosecond laser processing and the geometric phase analysis (GPA) are discussed, and the factors influencing the fabrication process including laser energy, laser fluence, and ablation threshold of material, are experimentally studied. In order to eliminate the dependence of the processing parameters on the samples, depositing Al film on a sample before laser processing is proposed for the fabrication of high-quality gratings. The energy of the laser pulse is optimized for clear line etching on Al film considering the distance between adjacent lines of parallel gratings. The optimal energy of the laser pulse is 9.8 μJ, and the optimum fluence is 9.5 J/mm2 with the waist radius of the laser beam 25.7 μm. With the optimal parameters, experimental results indicate that the highest frequency of parallel gratings is about 30 lines/mm, with a line width of 29 μm, and the distance between two adjacent laser pulses being of 10 μm. By performing tensile tests, micro-scale gratings fabricated on specimens are experimentally verified. The verification tests prove that the proposed fabrication method for the micro-scale gratings in GPA measurements is reliable and applicable, and the micro-scale gratings can be fabricated in many areas of interest, such as the crack tip, for deformation measurements. Furthermore, the adhesion between the Al film and the tested sample is strong enough so that the pattern sticks well to the sample.
منابع مشابه
Nanosecond Laser Surface Patterning of Bio Grade 316L Stainless Steel for Controlling its Wettability Characteristics
In this work, potential of the nanosecond laser processing technique on manipulating the surface wettability of 316L bio grade stainless steel is investigated. Results show that the steel wettability toward water, improves significantly after the laser treatment. Different analyses are assessed in correlation with wettability using Scanning Electron Microscope (SEM), Scanning Tunneling Microsco...
متن کاملEvaluation of Crater Width in Nanosecond Laser Ablation of Ti in Liquids and the Effect of Light Absorption by Ablated Nano-Particles
Micro size craters were created by interaction of nanosecond laser beam with titanium target in liquid media. The dimension of crater i.e. depth and width is important in some applications such as micromachining. When the interaction occurs in liquid environment, the ablated materials from the target expand into the liquid. The ablated material can affect the interaction process if the ablated ...
متن کاملFabrication of Graphene/MoS2 Nanocomposite for Flexible Energy Storage
In the present work,MoS2 decorated graphene nanocomposite powders were synthesized by laser scribing method.Theobtainedflexible light-scribed graphene/MoS2composites are very suitableas micro-supercapacitors and thus their performance was evaluated at different concentrations.The effect of laser scribing process to reducegraphene oxide (GO) was investigated. The GO/MoS2composite wassynthesized ...
متن کاملComposite Cavity Fiber Laser with Asymmetric Output Intensity and Wavelength
The composite cavity fiber laser (CCFL) is relatively simple in its fabrication, as it is essentially three wavelength matched Bragg gratings in a section of doped fiber. By using internal feedback with unequal sub-cavity lengths, unidirectional CCFLs with significantly asymmetric output power from its two outputs can be achieved. Preliminary results also show that it is possible for the lasing...
متن کاملIon-beam assisted laser fabrication of sensing plasmonic nanostructures
Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017